Competition of damping mechanisms for the phase-mixed Alfvén waves in the solar corona
نویسندگان
چکیده
The competition of the linear and nonlinear damping mechanisms for phase-mixed Alfvén waves in the solar corona is studied. It is shown that the nonlinear damping of the phasemixed Alfvén waves due to their parametric decay is stronger than both collisional and Landau damping for waves with frequencies below a critical frequency which depends on the wave amplitude. This critical frequency is close to the cyclotron frequency (∼ 105 s−1 in holes) even for small wave amplitudes of the order of 1% of the background value for the magnetic field. This means that the dissipation of the Alfvén wave flux in the corona can be significantly affected by the nonlinear wave dynamics. Nonlinear decay of the low-frequency Alfvén waves transmits a part of the wave energy from the length-scales created by phase mixing to smaller scales, where the waves damp more strongly. However, the direction of the effect can be reversed in the high-frequency domain, 10 s−1 < ω < 104 s−1, where the decay into counterstreaming waves is strongest, because the wave energy is quickly transferred to larger scales, where the actual dissipation is reduced. These effects are introduced by the vector nonlinearity which involves waves propagating in the different directions across magnetic field. The effects introduced by the scalar nonlinearity may also become important in phase mixing (Voitenko & Goossens, in preparation).
منابع مشابه
Damping of visco-resistive Alfven waves in solar spicules
Interaction of Alfven waves with plasma inhomogeneity generates phase mixing which can cause the dissipation of Alfven waves. We investigated the dissipation of standing Alfven waves due to phase mixing at the presence of steady flow and sheared magnetic field in solar spicules. Moreover, the transition region between chromosphere and corona was considered. Our numerical simulation showed that ...
متن کاملOn a source of Alfvén waves heating the solar corona
Studies of the origin of coronal heating and acceleration of the solar wind invoke high-frequency Alfvén waves. Here we suggest a source for such waves associated with twisted magnetic loops emerging on the solar surface and reconnecting with the open field. We identify the loops with the ephemeral regions (small-scale bipoles) observed by ground-based instruments and by SOHO. To characterize t...
متن کاملOn the Generation, Propagation, and Reflection of Alfvén Waves from the Solar Photosphere to the Distant Heliosphere
We present a comprehensive model of the global properties of Alfvén waves in the solar atmosphere and the fast solar wind. Linear non-WKB wave transport equations are solved from the photosphere to a distance past the orbit of the Earth, and for wave periods ranging from 3 s to 3 days. We derive a radially varying power spectrum of kinetic and magnetic energy fluctuations for waves propagating ...
متن کاملجذب تشدیدی و اتلاف امواج هیدرومغناطیسی در تاج خورشید
Although, the hot solar corona was discovered more than sixty years ago, however, the exact dissipation mechanism that heats the corona is still unknown. Resonant absorption and damping of Alfven waves appear to be one of the major candidates in this respect. The corona is highly structured and inhomogeneous medium, containing a large number of discrete magnetic loops. In this paper a cylindr...
متن کاملIon Cyclotron Wave Dissipation in the Solar Corona: the Summed Effect of More than 2000 Ion Species
In this paper the dissipation of ion cyclotron resonant waves in the extended solar corona is Alfve n examined in detail. For the Ðrst time, the wave damping arising from more than 2000 low-abundance ion species is taken into account. Useful approximations for the computation of coronal ionization equilibria for elements heavier than nickel are presented. Also, the Sobolev approximation from t...
متن کامل